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ABSTRACT 

Mesoscale simulations have traditionally been used to 
investigate structural morphology of polymer in solution, 
melts and blends. Recently we have been pushing such 
modeling methods to important areas of Nanotechnology 
and Drug delivery that are well out of reach of classical 
molecular dynamics. This paper summarizes our efforts in 
three important emerging areas: (1) polymer-nanotube 
composites; (2) drug diffusivity through cell membranes; 
and (3) solvent exchange in nanoporous membranes. The 
first two applications are based on a bead-spring-based 
approach as encoded in the Dissipative Particle Dynamics 
(DPD) module. The last application used density-based 
Mesoscale modeling as implemented in the Mesodyn  
module. 
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1 INTRODUCTION 

Many interesting problems in soft matter, such as 
polymer adsorption, polymer-surfactant interaction, 
microphase separation of block copolymers, formation and 
coalescence of droplets in emulsion, transport through 
living cells, and so on can involve spatial inhomogeneities 
over length-scales ranging between a few nm to a few µm, 
and exhibit dynamical phenomena over time-scales of 1 ms 
or greater. Problems at such length and time-scales cannot 
be directly addressed by either conventional molecular 
dynamics based on inter-atomic potentials or force fields, or 
by finite-elements based continuum mechanics. Rather, one 
needs to take recourse to computational techniques at the 
intermediate scale, called the mesoscale.  

Over the last few years several different approaches 
have been developed to address problems at the mesoscale. 
Accelrys’ Materials Studio™ suite of software incorporates 
two distinct methods - a particle-based method called 
Dissipative Particle Dynamics (DPD) [[1], [2]], and a 
density-based method called Mesodyn [[3]-[5]]. 
Traditionally, both these methods have been used to predict 
morphology of polymers and block copolymers in 
solutions, melts, and blends, and how they change under the 
influence of surfactants, temperature, and shear. The 

present paper summarizes our efforts to extend such codes 
to new application areas: (1) studying miscibility and 
phase-separation in polymer-nanotube composites (DPD); 
(2) estimating drug diffusivity through cell membranes 
(DPD); and (3) investigating solvent-exchange phenomena 
in nanoporous membranes (Mesodyn).  

2 POLYMER-NANOTUBE COMPOSITES 

The fact that the inclusion of even small amounts of 
nanomaterial coupled with appropriate processing steps 
appears to significantly improve mechanical, elastic, 
thermal, electrical, and optical absorpion properties have 
catapulted nanocomposites to being one of the first practical 
application areas of nanotechnology. One specific class of 
composite materials has recently received a lot of attention, 
i.e., in which carbon nanotubes (CNTs) are dispersed within 
polymeric matrices [[6], [7]]. Potential applications can 
range from structural materials, to electromagnetic and heat 
shielding, to optoelectronics. The physical properties of 
CNT-polymer composite material depend on the uniformity 
of CNT dispersion and the degree of parallel alignment 
within the polymeric matrix, as well as the efficacy of 
interfacial bonding between the two systems. Since it is 
difficult to control many of these properties experimentally, 
modeling and simulations could provide crucial insight and 
design guidance.  

The smallest size and time-scale to describe the 
morphology of CNT-polymer nanocomposites and its 
dynamical evolution is currently beyond the capability of 
standard classical forcefield simulations. We circumvent 
the problem by coarse-graining both the polymer and the 
CNT into strings of beads, connected by Hookean springs, 
and using DPD to hydrodynamically equilibriate such 
coarse-grained morphology. In DPD [[1], [2]] one 
represents an entire functional group by a single bead, 
thereby substantially reducing the number of particles to be 
simulated. The positions and velocities of the spherical 
beads are propagated by standard integrators as in regular 
MD methods and thermally equilibrated through a 
Langevin thermostat. But rather than interact through 
Lennard-Jones forces, the beads feel a simple soft pair-wise 
conservative repulsive potential, which embodies the 
essential chemistry of the system, and determines whether 
or not the CNTs disperse in a given polymer. This force is 
short range and has a simple analytic form resulting in fast 



 

 

computation per time-step. More importantly it provides an 
effective time-step of several picoseconds, 3-4 orders of 
magnitude larger than typical time-steps employed in a MD 
simulation. 

 

Figure 1. Computed solubility parameter versus tube diameter for 
armchair (filled circles) and zigzag (unfilled diamonds) CNTs. 
SYNTHIA-computed solubility values for various polymers are 
also indicated on the plot for comparison. 

The chemistry of polymer-nanotube interaction is 
incorporated through relating the DPD bead-bead repulsion 
to the Flory-Huggins χ-parameter [[8]], which in turn is 
obtained by squaring the difference of pure-component 
solubility parameters (δ) [[9]]. The latter is defined as the 
square root of the cohesive energy density. Reliable average 
values of δ for long-chain polymers can be estimated from 
simple correlation methods [[10]]. On the other hand, CNTs 
are not polymers in the conventional sense. Nevertheless, 
since CNTs tend to form close-packed bundles, a good 
measure of their cohesive energy can be obtained from the 
the energy cost of isolating a CNT from a bundle. 
Computing such energy with the Universal Forcefield 
[[11]] results in δ that is essentially independent of the CNT 
chiral angle, and that decreases as inverse square-root of the 
CNT diameter, as illustrated in Fig. 1. Flory-Huggins 
theory predicts that components with close enough δ, which 
leads to small DPD repulsion, should mix, while 
components with significantly differing δ should segregate. 
Thus, it follows from Fig. 1 that PMMA polymers should 
mix well with CNTs of diameters close to 1.4 nm (e.g. (10, 
10) CNTs), while PP is expected to form uniform 
composites with CNTs of diameters in the neighborhood of 
1.9 nm (e.g. (15, 15) CNTs). The CNT solubility parameter 
values in Fig. 1 are in great agreement with the 
experimental result that PmPV polymers mix with CNTs 
belonging to a narrow diameter range between 1.35-1.55 
nm [[12]].  

In addition, in order to represent the bending rigidity 
inherent to carbon nanotubes, we added an angle dependent 
potential among consecutive triplet of CNT beads: 
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In our DPD simulations each bead (CNT or polymer) 
was chosen to represent the equilibrium volume of a 
PMMA monomer (180 Å3), implying approximately 12 nm 
length of the simulated CNTs. Fig. 2 illustrates some of the 
most interesting results for CNT-PMMA composites with 
5% volume fraction of CNTs. These represent typical 
equilibrium structures after a simulation of 5x105 steps, 
corresponding to a real time of ~ 9 µs. As expected, the (10, 
10) CNTs readily mix with PMMA (fig. 1(A)), while the 
(15, 15) (as well as (5, 5) and (9, 0)) segregate (Fig. 1(B)). 
Fig. 1(C) displays the morphology of dispersed (10, 10) 
tubes following application of moderate external shear, and 
opens up the possibility of parallel alignment of the CNTs 
under realistic shear. For CNTs that don’t readily disperse 
(e.g., the (15, 15)) attachment of appropriate organic 
functional groups is likely to make them more compatible 
with the polymer. Fig. 1(D) shows the morphology under 
such a structural modification, with acrylate monomers 
attached at regular intervals along the nanotube.  

 

Figure 2. Equilibrium morphologies of CNT-PMMA composites 
at ambient temperature and pressure as modeled by DPD. CNTs 
are shown in white, while the PMMA chains are hidden for 
clarity. (A) Dispersed (10, 10) CNTs; (B) segregated (15,15) 
CNTs; (C) parallel alignment of (10, 10) CNTs following a shear; 
(D) dispersion of (15, 15) CNTs functionalized with acrylate 
groups. 

It would be interesting to vary the CNT and polymer 
lengths, relative compositions, shear rates, and the attached 
functional groups and investigate the resultant morphology 
of the nanocomposite. Such morphologies could be 
represented on a numerical grid, which could then be input 
to finite-elements-based codes [[13]] in order to compute 
useful physical properties of the composite. We are also 
currently investigating other effects, e.g., the efficacy of 



 

 

appropriate triblock copolymers in dispersing CNTs in 
various solvents, and the effect of reduced dimensionality 
on CNT dispersion and bundling. 

3 DPD MODELING OF DRUG DIFFUSION 
ACROSS CELL MEMBRANE 

The effectiveness of a membrane in allowing the 
diffusion of a molecule is embodied in a quantity called the 
Permeability (P), which is defined by the equation J = - P 
∆c. Here J is the net number of molecules passing through 
unit area of the membrane per unit time, ∆c is the 
difference in the concentration of the molecule on either 
side of the membrane, and the negative sign indicates that 
the net flow of molecules occurs against the concentration 
gradient. It can be shown that P is given by: 

P = β Dm/ ∆x ,  

where β is the membrane:water partition coefficient of the 
molecule (often taken to be the octanol:water partition 
coefficient), ∆x is the membrane width, and Dm the 
diffusion constant of the molecule through the membrane. 
While β can be estimated from various solvation schemes 
within Quantum chemistry codes, the diffusion constant Dm 
requires dynamical simulations of sufficient time in order to 
allow the diffusing molecule to move through a distance of 
at least a few times the average inter-particle spacing. For 
small molecules like methanol this could be achieved with a 
classical molecular dynamics simulation of ~ 1ns, but for 
larger molecules a much longer simulation becomes 
necessary. In this section, we discuss our initial exploration 
into using a mesoscale code like DPD to compute the 
diffusion constant of small non-electrolyte molecules 
through a realistic membrane. 

The first step is to build a good mesoscale model of the 
membrane and the diffusing molecule. One could follow 
the work of Groot and Rabone [[14]] to achieve such a 
construction, as described in our previous work [[15]]. With 
such a “meso” setup, it is tempting to run a DPD dynamics 
simulation and compute the diffusion constant of the drug 
through the bilayer. Through several initial runs we have 
verified that molecules like Aspirin can cross the lipid 
bilayer within just a few hours of CPU time even on a 
single-processor 600 MHz Pentium PC, while atomistic 
molecular dynamics do not display significant diffusion 
even over runs of 1 ns, which can take several days of 
simulation time. However, the DPD methodology comes 
with its own set of approximations, especially involving the 
coarse graining of space and time. So, extracting a physical 
value of Dm requires careful interpretation and good 
statistical averaging. Such an effort is currently underway. 
In the rest of this section, we discuss some observations and 
thoughts from our explorations so far. 

1. Length- and time-scales: The DPD code yields 
diffusion constant in reduced (i.e. dimensionless) units. In 
order to convert this to a physical unit one needs to 
calibrate the length-scale and time-scale of the simulation. 
The length-scale is given by the interaction cutoff 

3/1)( bc VR ρ= , where ρ  is the average DPD bead density 
in reduced units (typical value being between 3 and 5) and 

bV is the bead volume in real physical units. For a molecule 
that is mN  times the volume of a water molecule ( wV ≈ 30 
Å3) 3/1)( wmc VNR ρ= . Thus for instance, if ρ  = 3 and 

mN =3, one obtains 46.6≈cR  Å. On the other hand, the 
time-scale is obtained by performing DPD simulation on 
liquid water followed by equating the computed self-
diffusion constant to the experimental value at room 
temperature. For mN =1 and dissipation parameter γ = 4.5 
(in reduced units, see ref. [[1]] for the definition of γ) this 
yields a time-scale 7.25=τ ps [[16]]. Scaling of τ with 
bead-size mN  is discussed below in point 3. 

2. Dependence of Dm on the solubility parameter of 
diffusing molecule: The relative hydrophobicity of the 
diffusing molecule with respect to the membrane core, 
which is governed by the difference in their solubility 
parameters (δ) is reflected in the Flory-Huggin’s χ-
parameter, and therefore in the conservative repulsion term 
in DPD a∆ [[9]]. From preliminary simulations it appears 
that the diffusion constant of a 1-bead molecule through an 
amorphous polymer is not very sensitive to a∆ up to 
moderate values, and then drops sharply for higher a∆ . 
This implies that hydrophilic molecules should take longer 
to diffuse through the cell membrane than hydrophobic 
molecules of the same size. However, the simulated Dm also 
appear to have a strong dependence on the dissipation 
parameter γ . More simulations at different values of γ and 

a∆ , as well as sophisticated theoretical analysis [[17]] is 
necessary to see if a quantitatively accurate γ-independent 
solubility-parameter-dependence can be extracted from 
DPD simulations.  

3. Dependence of Dm on the size of diffusing 
molecule: Size-dependence of Dm could be directly studied 
in DPD simulations by representing a bigger bead as a 
complex of smaller beads connected by springs. Initial 
simulations suggest that for moderately hydrophobic 
molecules (solubility parameter δ < 30) Dm is roughly 
inversely proportional to the bead-size, a feature typical of 
Rouse-like models in polymer dynamics [[18]]. Results for 
Dm also appear to be relatively insensitive to the value of 
polymer spring constant as long as one uses a value 4.0 or 
greater (in reduced DPD units). Such result, combined with 
the relative insensitivity of Dm to the solubility parameter of 
the molecule for moderately hydrophobic drugs (see point 2 
above) is consistent with the scaling law 3/5  mN∝τ  as 
proposed by Groot and Rabone [[14]]. Experimentally, Dm 



 

 

displays a variety of scaling behavior with molecule size, 
with exponents typically ranging from –0.6 to –1.2 [[19]]. 
For moderately hydrophobic molecules, our simulated 
exponent (–1.0) falls somewhere in the middle of the above 
experimental range. 

4. PRECIPITATION MEMBRANE MORPHOLOGY 
– INVESTIGATION WITH MESODYN 

 
The first two applications involved coarse-graining a 

group of atoms or functional groups into “beads”, as 
implemented in the DPD code. In both these applications 
the fraction of different components remains constant 
during the simulation. That condition gets violated in this 
last application, which involves changes in morphology in a 
polymer membrane when solvent molecules are gradually 
replaced by non-solvent molecules.  

Polymer membranes are widely used in industry for 
processes such as filtration, dialysis and separation [[20]]. 
Controlling the morphology of the membrane is of great 
importance in tailoring them to perform appropriately for 
specific applications, since it is the size and distribution of 
pores that largely determines their function. An efficient 
technique for generating different membrane morphologies  
is the so-called immersion precipitation, in which a thin 
film of polymer-solution (resting on a support) is lowered 
into a bath of non-solvent. After immersion, the solvent 
diffuses out of the film to be replaced by the non-solvent, 
which drives precipitation of the polymer. At a certain 
concentration of non-solvent in the system - the so-called 
precipitation point - the polymer system is changed from a 
sol to gel.  

To simulate such a phenomenon we employ a density-
based mesoscale method called MesoDyn. The algorithm 
dynamically evolves component density fields defined at 
descrete grid points, driven by both chemical potential 
gradients and by Langevin noise towards the free energy 
minimum.  In particular, for the present application we 
utilize a specific feature of MesoDyn that allows the 
concentration of the species in a model to be varied. This 
allows us to gradually exchange the solvent for a non-
solvent component. A few details of the algorithm are 
sketched below. 

MesoDyn is based on the Kohn-Sham equivalence 
scheme between a real system and an ideal (equilibrium) 
system under a certain external potential. In other words, 
any system out-of-equilibrium can be regarded as a system 
in equilibrium but with certain external constraints. The 
evolution towards equilibrium then becomes an evolution 
of the external constraints as they reflect the constantly 
changing state of the system. The component density fields 
are functionals of the ideal system Hamiltonian (that of 
Gaussian chains) and a ‘non-ideal’ potential reflecting other 
interactions.  

At the start of a MesoDyn run the density field of a 
component X is set equal to the average concentration 
everywhere, i.e. the system is homogeneous. The density 
fields then evolve according to a stochastic diffusion 
equation containing the external fields.  In fact, MesoDyn 
solves implicit partial differential equations containing the 
densities and potentials by means of iterating the potentials 
for the next time step until the new density distribution 
given by the diffusion equation is satisfied. Simulation of 
solvent exchange requires that the concentration of solvent 
and non-solvent in the simulation box be changed during 
the course of the run.  Due to the iteration algorithm 
outlined above, MesoDyn can adapt to changes in 
concentration, as the solver scheme automatically finds the 
new potentials which will satisfy the rescaled density fields. 
Practical variation of concentration was achieved by the 
development of a perl script to automate the generation of 
suitable input files, submit the restarted jobs to 
computational server, and collect the resulting files. This 
enabled the generation of a single trajectory for the 
evolution of the system as opposed to a large number of 
individual frames. 

We note, however, that the model in its current form 
does not take diffusion (nor any glass-transition) into 
account. In reality the kinetics of non-solvent penetration 
has a strong controlling effect on the type of morphology 
produced.  Delayed demixing in which the non-solvent is 
slow to penetrate gives rise to membranes with dense skin 
layers. The simulation is currently restricted to investigate 
the instantaneous demixing and the production of 
bicontinuous phases. Preliminary results from such 
simulations are published elsewhere [[21]]. 
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